Loading rate effect on mechanical properties of cervical spine ligaments.
نویسندگان
چکیده
Mechanical properties of cervical spine ligaments are of great importance for an accurate finite element model when analyzing the injury mechanism. However, there is still little experimental data in literature regarding fresh human cervical spine ligaments under physiological conditions. The focus of the present study is placed on three cervical spine ligaments that stabilize the spine and protect the spinal cord: the anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The ligaments were tested within 24-48 hours after death, under two different loading rates. An increase trend in failure load, failure stress, stiffness and modulus was observed, but proved not to be significant for all ligament types. The loading rate had the highest impact on failure forces for all three ligaments (a 39.1% average increase was found). The observed increase trend, compared to the existing increase trends reported in literature, indicates the importance of carefully applying the existing experimental data, especially when creating scaling factors. A better understanding of the loading rate effect on ligaments properties would enable better case-specific human modelling.
منابع مشابه
Mechanical Properties of Human Craniovertebral Ligaments
During physiological motion, cervical spine ligaments limit the range of motion of the neck. However, the integrity of these ligaments can be compromised under excessive loading, specifically during vehicle crash scenarios, which is the leading cause of upper cervical spine injury [1]. Techniques to predict injury, such as the use of finite element models, require accurate mechanical properties...
متن کاملEffect of Loading Rate on Compressive Failure Mechanics of the Pediatric Cervical Spine
This study investigated the effect of loading rate on the compressive failure mechanics of the pediatric cervical spine, using baboons of a controlled age group as a human surrogate. Cervical spines were obtained from 12 male baboons (9 ± 1 human equivalent years) and dissected into 35 2-FSU segments. All specimens underwent cyclic preconditioning to 100 N for 50 cycles at 1 Hz prior to failure...
متن کاملExperimental determination of cervical spine mechanical properties.
The results of research into human cervical spine mechanical parameters necessary for process modelling are presented. Our tests were divided into identification of tissues mechanical features and determination of data useful for validating human cervical spine models. Mechanical properties of the whole cervical spine as well as the stiffness of ligaments and discs were identified on the basis ...
متن کاملDynamic tensile testing of ligaments from the human cervical spine
This study focuses on establishing appropriate experimental methodology to facilitate investigation of the dynamic stress-strain characteristics of soft bio-tissues. Dynamic mechanical tests were conducted on ligaments from the human cervical spine (neck), using a tensile split Hopkinson bar device. The strain rates imposed were of the order of 10~10/s. As ligaments are extremely soft and exten...
متن کاملDynamic mechanical properties of intact human cervical spine ligaments.
BACKGROUND CONTEXT Most previous studies have investigated ligament mechanical properties at slow elongation rates of less than 25 mm/s. PURPOSE To determine the tensile mechanical properties, at a fast elongation rate, of intact human cervical anterior and posterior longitudinal, capsular, and interspinous and supraspinous ligaments, middle-third disc, and ligamentum flavum. STUDY DESIGN/S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta of bioengineering and biomechanics
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2014